

Responding to the "Arrival": Essential Background Information and Strategies for Language Instructors in the Age of Human-Like Language Technologies (Machine Translation and Large Language Models

> Dr. Joel A.Walsh October 12,2023

## Introductions

- Name
- Primary Language, Languages taught
- Favorite Bay area restaurant

## ages taught Int



Ē

# Objectives

- 1. To be able to define what a language model is/does, and how machine translation works
- 2. To understand weaknesses and strengths of these technologies

3. To walk away from today and Friday's workshop with the future

concrete tools and next steps for working with these models in



### Some definitions

- Machine Learning: Models that learn how to do tasks from data.

"...for some tasks, however, we do not have an algorithm, despite decades of research. Some of these are tasks we as human beings can do, and do effortlessly, without even being aware of how we do them. We can recognize a person from a photograph; we can move in a crowded room without hitting objects or people; we can play chess, drive a car, and hold conversations in a foreign language."

Ethem Alpaydin (2020). Introduction to Machine Learning (Fourth ed.). MIT. pp. xix, 1–3, 13–18.- Natural Language Processing:

## Some definitions

- Machine Translation: Using rules or probability models to translate from one language to another
- Large Language Models (LLMs): Language Models predict the next token in a sequence, given the tokens that come before it. "Large" generally means trained on internet-scale corpora, parameter counts in the billions
- Natural Language Processing: Natural Language Processing (NLP) is concerned with, "...the set of methods for making human language accessible to computers". *Eisenstein, J. Introduction to Natural Language Processing.* (2018)

- Take 2-3 minutes to write down as many as you can in the padlet. Feel free to discuss in the chat, or in person once you are done.
- Be general (habits of mind, conceptual knowledge)! Be specific ( tasks, interactions)! Be ungovernable (????)!
- At the end of 3 minutes, we will share out as a group, with a plot twist.

What are some competencies and skills that students should gain by the end of a language course?



## How many of your skills and competencies involved students creating How many of your skills and competencies involved other aspects of

### Plot twist



## Agenda

(With some diversions along the way)

- I. History of language technologies
- II. Anatomy of modern Large Language Models and Transformers-based MT technologies
- III. Implications of /strategies for use of language technologies in language instruction

#### Early foundational machine translation technology

Predating Georgetown-IBM experiment

- later systems ie frequency analysis, probability and statistics applications
- 1940s Claude Shannon and information theory, advances in cryptography from WW1

• 9th century- Al-Kindi develops many of the mathematical tools used in

The math: Here

# I. History of language technologies

- Early attempts to translate Russian/ DARPA involvement
- ELIZA -Joseph Weizenbaum @MIT
- The rise of statistical/empirical methods for natural language processing
- Winter
- Imagenet/ GPU revolution
- Attention and Transformers
- BERT -> ChatGPT

#### Early foundational machine translation technology

## The Noisy Channel Model

e





Source:

A Mathematical Theory of Communication

By C. E. SHANNON

# $\hat{\mathbf{e}} = \arg \max p(\mathbf{e}|\mathbf{f})$

The math: Here

#### With partners: Given this scenario, identify the following



ê f  $\hat{\mathbf{e}} = rg\max_{\mathbf{e}} p(\mathbf{e}|\mathbf{f})$ 



#### Early foundational machine translation technology

Predating Georgetown-IBM experiment

 1949 - Warren Weaver's proposals in "Translation memorandum" recasting machine translation as a cryptography problem, urges systems would need to use context.

researchers to use computers. Word to word translations will not do, future

# Georgetown IBM experiment -1954

- Russian to English demonstration
- Contained 6 grammatical rules, 250 lexical items
- Used carefully curated passages
- Well publicized but ultimately brittle
- By 1966 machine translation was essentially dead, funding had dried up

Epic fail

#### I. History of language technologies

Welcome to



Eliza is a mock Rogerian psychotherapist. The original program was described by Joseph Weizenbaum in 1966. This implementation by Norbert Landsteiner 2005.

ELIZA: Is something troubling you ? YOU: Men are all alike. ELIZA: What is the connection, do you suppose ? YOU: They're always bugging us about something or other. ELIZA: Can you think of a specific example ? YOU: Well, my boyfriend made me come here. ELIZA: Is it important to you that your boyfriend made you come here ? YOU: He says I'm depressed much of the time. ELIZA: I am sorry to hear that you are depressed. YOU: It's true. I am unhappy. ELIZA: Can you explain what made you unhappy ? YOU:

|     | IIII | ZZZZZZ | AA  | AAA  |
|-----|------|--------|-----|------|
|     | ΙI   | ZZ     | AA  | AA   |
|     | ΙI   | ZZZ    | AAA | AAAA |
|     | ΙI   | ZZ     | AA  | AA   |
| LLL | IIII | ZZZZZZ | AA  | AA   |

- ELIZA 1964 MIT, created by Joseph Weizenbaum
  - First known chatbot
  - Used pattern matching and substitution

  - Original source code was found in MI archives, many online versions exist : https://psych.fullerton.edu/mbirnbaum/psych101/eliza.htm
  - Let's try! : <u>https://shorturl.at/fLOW3</u>

I. History of language technologies

• Weizenbaum was surprised to see how much people anthropomorphized ELIZA

#### The rise of empirical natural language processing (80s -90s)

- "These methods employ learning techniques to automatically extract linguistic knowledge from natural language corpora rather than require the system developer to manually encode the requisite knowledge"

- An Overview of Empirical Natural Language Processing Eric Brill and Raymond J. Mooney. 1999



#### The rise of empirical natural language processing (80s -90s)

- Key contributions
  - Language modeling- assigning probabilities to sentences - Applying machine learning via supervised learning to form language

models

- Modeling sentences as sequences (Hidden Markov Models)

text, etc.

-Deriving "features" (n-grams, parts of speech, etc.) to translate, predict







## 2000s -early 2010s

The neural network revolution

- Letting the models learn the features from data, only now we need lots of data
- Imagine 2012 Exploiting advances in hardware, ie GPUs - Seq2seq and encoder-decoder models
- 2017 A mathematical language for context in translation and token prediction (Attention) rises, and eventually becomes transformers



## The rise of Transformers and LLMs - 2018now

- translation
- powerful general purpose computing paradigm

#### - LLMs begin to show nearly state-of-the-art capabilities in

# - Transformers and next symbol prediction as a flexible and



II. Anatomy of modern Large Language Models and Transformers-based MT technologies

- Older models : rule-based
- Empirical, statistical some rules, also learn from data
- with enough data but what does this "data" look like?

# - Neural - learn solely from data, rules (ie syntax) emerge

II. Anatomy of modern Large Language Models and Transformers-based MT technologies Where does the data come from?

#### Gold standard example: Parallel Corpus made by experts

# United Nations Parallel Corpus

#### Introduction

The United Nations Parallel Corpus v1.0 is composed of official records and other parliamentary documents of the United Nations that are in the public domain. These documents are mostly available in the six official languages of the United Nations. The current version of the corpus contains content that was produced and manually translated between 1990 and 2014, including sentence-level alignments.

## II. Anatomy of modern Large Language Models and Transformers-based MT technologies

#### **Corpus statistics**

#### Statistics for pair-wise aligned documents:

|    | ar          | en          | es          | fr          | ru          | zh         |
|----|-------------|-------------|-------------|-------------|-------------|------------|
| ar | _           | 111,241     | 113,065     | 112,605     | 111,896     | 91,345     |
|    |             | 18,539,207  | 18,578,118  | 18,281,635  | 18,863,363  | 15,595,948 |
| en | 456,552,223 | _           | 123,844     | 149,741     | 133,089     | 91,028     |
|    | 512,087,009 |             | 21,911,121  | 25,805,088  | 23,239,280  | 15,886,041 |
| es | 459,383,823 | 590,672,799 | _           | 125,098     | 115,921     | 91,704     |
|    | 593,671,507 | 678,778,068 |             | 21,915,504  | 19,993,922  | 15,428,381 |
| fr | 452,833,187 | 668,518,779 | 674,477,239 | _           | 133,510     | 91,613     |
|    | 597,651,233 | 782,912,487 | 688,418,806 |             | 22,381,416  | 15,206,689 |
| ru | 462,021,954 | 601,002,317 | 623,230,646 | 691,062,370 | _           | 92,337     |
|    | 491,166,055 | 569,888,234 | 513,100,827 | 557,143,420 |             | 16,038,721 |
| zh | 387,968,412 | 425,562,909 | 493,338,256 | 498,007,502 | 417,366,738 | _          |
|    | 387,931,939 | 381,371,583 | 382,052,741 | 377,884,885 | 392,372,764 |            |

II. Anatomy of modern Large Language Models and Transformers-based MT technologies

Not as good but still pretty decent: exploiting crowdsourced data - mBERT and Wikipedia

- Top 104 languages with the largest Wikipedia usage, using a masked language modeling (MLM) objective

- Some semblance of curation and parallel semantics across articles

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. 2018

## What does this mean for machine translation?

#### Tiers of resources multilingual models

| WikiSize | Languages                                                                     | # Languages | Size Range (GB)  |
|----------|-------------------------------------------------------------------------------|-------------|------------------|
| 3        | io, pms, scn, <b>yo</b>                                                       | 4           | [0.006, 0.011]   |
| 4        | cv, lmo, mg, min, su, vo                                                      | 6           | [0.011, 0.022]   |
| 5        | an, bar, br, ce, fy, ga, gu, is, jv, ky, lb, mn, my, nds, ne, pa, pnb, sw, tg | 19          | [0.022, 0.044]   |
| 6        | af, ba, cy, kn, la, mr, oc, sco, sq, tl, tt, uz                               | 12          | [0.044, 0.088]   |
| 7        | az, bn, bs, eu, hi, ka, kk, lt, <b>lv</b> , mk, ml, nn, ta, te, ur            | 15          | [0.088, 0.177]   |
| 8        | ast, be, bg, da, el, et, gl, hr, hy, ms, sh, sk, sl, th, war                  | 15          | [0.177, 0.354]   |
| 9        | fa, fi, he, id, ko, no, ro, sr, tr, vi                                        | 10          | [0.354, 0.707]   |
| 10       | ar, ca, cs, hu, nl, sv, uk                                                    | 7           | [0.707, 1.414]   |
| 11       | ceb, it, ja, pl, pt, zh                                                       | 6           | [1.414, 2.828]   |
| 12       | de, es, fr, ru                                                                | 4           | [2.828, 5.657]   |
| 14       | en                                                                            | 1           | [11.314, 22.627] |

Table 1: List of 99 languages we consider in mBERT and its pretraining corpus size. Languages in **bold** are the languages we consider in §5.

#### Pretraining corpus size



II. Anatomy of modern Large Language Models and Transformers-based MT technologies

#### Dear God what have we done: LLMs trained using masked language modeling (MLM) over internet level corpora, translation learned along the way from all manner of cursed sources



#### What differences between source and target languages effects MT quality?

- Linguistic typology
- Lexical divergence
- Morphological typology
- Referential density ex: pro-drop languages



- 2. nurse
- 6. hairdresser 5. socialite
- 7. nanny 8. bookkeeper 9. stylist
- 10. housekeeper 11. interior designer 12. guidance counselor

#### Extreme *he* occupations

- 3. protege 6. architect 9. broadcaster 12. boss
- 2. skipper 5. captain 8. warrior 11. figher pilot

Figure 1: The most extreme occupations as projected on to the she-he gender direction on g2vNEWS. Occupations such as *businesswoman*, where gender is suggested by the orthography, were excluded.

Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., & Kalai, A. (2016). Man is to Computer Programmer as Woman is to Home

- 7. financier
- 1. maestro

1. homemaker

4. librarian

- 4. philosopher
- 10. magician

#### Extreme *she* occupations

3. receptionist



## Attention is all you need

Foundational paper behind machine translation and LLMs like chatGPT - utilizing the MLM objective

#### **Attention Is All You Need**

Ashish Vaswani\* Google Brain avaswani@google.com Noam Shazeer\*Niki Parmar\*Google BrainGoogle Researchnoam@google.comnikip@google.com

Llion Jones\* Google Research llion@google.com Aidan N. Gomez\* †Łukasz Kaiser\*University of TorontoGoogle Brainaidan@cs.toronto.edulukaszkaiser@google.com

Illia Polosukhin\*<sup>‡</sup> illia.polosukhin@gmail.com Jakob Uszkoreit\* Google Research

usz@google.com

- MultiHead(Q, K, V) = C
  - where  $head_i = A$ 
    - $Attention(Q_{i})$

Where the projections are parameter matrices Wand  $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$ .

### What is "attention"

A bunch of matrix algebra, but it's more intuitive than that

$$\begin{aligned} &\text{Concat}(\text{head}_{1}, ..., \text{head}_{h})W^{O} \\ &\text{Attention}(QW_{i}^{Q}, KW_{i}^{K}, VW_{i}^{V}) \\ &, K, V) = \text{softmax}(\frac{QK^{T}}{\sqrt{d_{k}}})V \\ &V_{i}^{Q} \in \mathbb{R}^{d_{\text{model}} \times d_{k}}, W_{i}^{K} \in \mathbb{R}^{d_{\text{model}} \times d_{k}}, W_{i}^{V} \in \mathbb{R}^{d_{\text{model}} \times d_{v}} \end{aligned}$$

Take two minutes and fill in the blanks with the first word that comes to mind. Put an asterisks next to the part or parts of the sentence that most influenced your prediction.



If you are attending remotely, write out your answers on a piece of paper. When prompted, put your answer in the chat!

1. I travelled to the beach by \_\_\_\_\_.

2. I \_\_\_\_\_ to the store.

We \_\_\_\_\_ to the national park.

Did you try the \_\_\_\_\_ of the day at Cheese Board?



A. Take a guess at the probability [0,1] of your prediction occurring on the internet. B. What other words in the sentence made you make the predictions that you did?

1. I travelled to the beach by

2. I to the grocery store.

We to the national park.

Did you try the of the day at Cheese Board?

With your elbow partners : fill in the blanks for the translation Please use Google translate if you aren't conversant in Spanish!

## English: They went to the house to feed themselves.

## Spanish: \_\_\_\_\_a la

a la casa para





Gender-specific translations on the Google Translate website.

"Reducing gender bias in Google Translate". Blog post. James Kuczmarski

For more reading on this: Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), Article 16. https://doi.org/10.1073/pnas.1720347115

After





A. Take a guess at the probability [0,1] of your prediction occurring on the internet. B. What other words in the sentence made you make the predictions that you did?

1. I travelled to the beach by

2. I to the grocery store.

We to the national park.

Did you try the of the day at Cheese Board?

# How does the model get a sense of what to "Masked" training

Sentence A :

[MASK] you try the pizza of the day? Did [MASK] try the pizza of the day? Did you [MASK] the pizza of the day?

The "teacher" answer:

Did you try the pizza of the day?

Sentence B initial predictions :

[Did] you try the pizza of the day? Did [they]try the pizza of the day? Did you [eat] the pizza of the day?







### Prediction architecture: Transformers in machine translation



**Figure 10.5** The encoder-decoder transformer architecture for machine translation. The encoder uses the transformer blocks we saw in Chapter 9, while the decoder uses a more powerful block with an extra **cross-attention** layer that can attend to all the encoder words. We'll see this in more detail in the next section.

Speech and Language Processing. (n.d.). Retrieved September 13, 2023, from https://web.stanford.edu/~jurafsky/slp3/

Spanish: ¿Todavía están en casa? Lightly trained neural network English translation: Are you still at home?

# Attention map



# Tranformers/Attention : Not just for symbols

Which part of the picture leads to the prediction?

## What is Reinforcement Learning with Human Feedback? RLHF

### Or, how ChatGPT made a BIG usability and performance leap

- Can you explain to me how RL with human feedback works for language models like I am five?
  - Sure! So, imagine you have a robot named Rufus who wants to learn how to talk like a human. Rufus has a language model that helps him understand words and sentences.

\$

First, Rufus will say something using his language model. For example, he might say "I am a robot."

Then, a human will listen to what Rufus said and give him feedback on whether it sounded like a natural sentence a human would say. The human might say, "That's not quite right, Rufus. Humans don't usually say 'I am a robot.' They might say 'I'm a robot' or 'I am a machine.'"

Rufus will take this feedback and use it to update his language model. He will try to say the sentence again, using the new information he received from the human. This time, he might say "I'm a robot."

The human will listen again and give Rufus more feedback. This process will continue until Rufus can say sentences that sound natural to a human.

Over time, Rufus will learn how to talk like a human thanks to the feedback he receives from humans. This is how language models can be improved using RL with human feedback.

## What is Reinforcement Learning with Human Feedback? RLHF



Or, how ChatGPT made a BIG usability and performance leap

# Who are the humans in Human Feedback?

### Exclusive: OpenAI Used Kenyan Workers on Less Than \$2 Per Hour to Make ChatGPT Less Toxic

Published on January 6, 2022 In Endless Origins

### Is AI fast becoming a technology built on worker exploitation from Global South?

While working with crowd work platforms for datasets, it is essential to consider annotator subjectivity as it has the capability to make the data set of extremely high or low quality, which in turn affects the whole ML model.

Source: Analytics India magazine

### TIME

**BUSINESS • TECHNOLOGY** 

Source: Time magazine

# What happens when AI trains AI?

- Google Translate digital watermark
- OpenAl not so much.



III. Implications of /strategies for use of language technologies in



# What is "emergence"? Is This AGI?

- AGI : Artificial General Intelligence
  - No, what does that even mean?
- world and predicting symbols is all LLMs can do
- the way. Is this AGI?

# - Physical symbol systems are powerful systems for representing the

- Emergence: Train a model for one thing, and it learns something else on





François Chollet 🤣 @fchollet

If you train a ML system on one task, and then it becomes able to perform another task you did not anticipate, that's emergence.

Many people interpret "emergence" as something wondrous and magical -- "it's alive!" But it's actually banal and has been going on for a long time.





### François Chollet 🤣 @fchollet · Aug 10

Every self-supervised system ever developed has displayed emergent properties of some kind.

When Mikolov trained word vectors in 2013, he noticed that some vectors in the resulting space encoded useful semantic transformations, like "plural(x)" or "gender(x)". That's emergence.

🗘 104



ı**|**1 7,407



### François Chollet 🤣 @fchollet · Aug 10

He had not designed or trained the system to do this. It was picked up as a by-product of learning word co-occurrences. Learn to organize words in a vector space, and your space will turn out to have interesting properties you did not anticipate.

 Q 1
 1
 1
 6,438



### Resource levels in CommonCrawl, and thus most LLMs

| Languaga   | Code | Pop.  | CC Size |      |
|------------|------|-------|---------|------|
| Language   |      | (M)   | (%)     | Cat. |
| English    | en   | 1,452 | 45.8786 | Η    |
| Russian    | ru   | 258   | 5.9692  | Η    |
| German     | de   | 134   | 5.8811  | Η    |
| Chinese    | zh   | 1,118 | 4.8747  | Н    |
| Japanese   | jp   | 125   | 4.7884  | Η    |
| French     | fr   | 274   | 4.7254  | Η    |
| Spanish    | es   | 548   | 4.4690  | Η    |
| Italian    | it   | 68    | 2.5712  | Η    |
| Dutch      | nl   | 30    | 2.0585  | Н    |
| Polish     | pl   | 45    | 1.6636  | Н    |
| Portuguese | pt   | 257   | 1.1505  | Η    |
| Vietnamese | vi   | 85    | 1.0299  | Η    |
| Turkish    | tr   | 88    | 0.8439  | Μ    |
| Indonesian | id   | 199   | 0.7991  | Μ    |
| Swedish    | sv   | 13    | 0.6969  | Μ    |
| Arabic     | ar   | 274   | 0.6658  | Μ    |
| Persian    | fa   | 130   | 0.6582  | Μ    |
| Korean     | ko   | 81    | 0.6498  | Μ    |
| Greek      | el   | 13    | 0.5870  | Μ    |
| Thai       | th   | 60    | 0.4143  | Μ    |
| Ukrainian  | uk   | 33    | 0.3304  | Μ    |
| Bulgarian  | bg   | 8     | 0.2900  | Μ    |
| Hindi      | hi   | 602   | 0.1588  | Μ    |

Lai, V. D., Ngo, N. T., Veyseh, A. P. B., Man, H., Dernoncourt, F., Bui, T., & Nguyen, T. H. (2023). ChatGPT Beyond English: 7

| bn | 272                                                                  | 0.0930                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ta | 86                                                                   | 0.0446                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
| ur | 231                                                                  | 0.0274                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
| ml | 36                                                                   | 0.0222                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
| mr | 99                                                                   | 0.0213                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
| te | 95                                                                   | 0.0183                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
| gu | 62                                                                   | 0.0126                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
| my | 33                                                                   | 0.0126                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
| kn | 64                                                                   | 0.0122                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                    |
| SW | 71                                                                   | 0.0077                                                                                                                                                                                                                                   | Х                                                                                                                                                                                                                                                                                                                                                                                                    |
| pa | 113                                                                  | 0.0061                                                                                                                                                                                                                                   | Х                                                                                                                                                                                                                                                                                                                                                                                                    |
| ky | 5                                                                    | 0.0049                                                                                                                                                                                                                                   | Х                                                                                                                                                                                                                                                                                                                                                                                                    |
| or | 39                                                                   | 0.0044                                                                                                                                                                                                                                   | Х                                                                                                                                                                                                                                                                                                                                                                                                    |
| as | 15                                                                   | 0.0025                                                                                                                                                                                                                                   | Х                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | ta<br>ur<br>ml<br>mr<br>te<br>gu<br>my<br>kn<br>sw<br>pa<br>ky<br>or | ta       86         ur       231         ml       36         mr       99         te       95         gu       62         my       33         kn       64         sw       71         pa       113         ky       5         or       39 | ta       86       0.0446         ur       231       0.0274         ml       36       0.0222         mr       99       0.0213         te       95       0.0183         gu       62       0.0126         my       33       0.0126         kn       64       0.0122         sw       71       0.0077         pa       113       0.0061         ky       5       0.0049         or       39       0.0044 |

Table 1: List of languages, language codes, numbers of first and second speakers, data ratios in the CommonCrawl corpus, and language categories. The languages are grouped into categories based on their data ratios in the CommomCrawl corpus: High Resource (H, > 1%), Medium Resource (M, > 0.1%), and Low Resource (L, > 0.01%), and Extremely-Low Resource (X, < 0.01%).



# For more info on linguistic diversity in NLP

### The State and Fate of Linguistic Diversity and Inclusion in the NLP World

Pratik Joshi\* Sebastin Santy\* Amar Budhiraja\* Kalika Bali Monojit Choudhury Microsoft Research, India {t-prjos, t-sesan, amar.budhiraja, kalikab, monojitc}@microsoft.com

# High resource v low resource, alphabet similarity

it was trained on.

Source: "Al's language gap", https://www.axios.com/2023/09/08/ai-languagegap-chatgpt

 GPT-4, the latest LLM from OpenAI, <u>excels</u> at English, Spanish, Italian, Indonesian and other Latin alphabet-based languages, but it struggles with Thai, Punjabi and other languages based on different alphabets. Baidu's Ernie Bot is best with Chinese, which











### Few shot:





\* Only trained to predict the next tokens given the prompt!

### Language models have an element of randomness, are constantly updated

- LMs are not generally not deterministic, but some widely available ones let you toggle this! But making it deterministic takes some of the power away.
- Most sample from a distribution p(next\_token | previous\_tokens)
- What works in one session might not work in another, or at a later date

| Playground                                    |                     | Your presets V                                                                                                                                                       | ave View code Sha |
|-----------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <b>SYSTEM</b><br>You are a helpful assistant. | USER Enter a user r | Mode<br>Chat<br>Model                                                                                                                                                |                   |
|                                               | Submit              | Controls randomness: Lowering result<br>in less random completions. As the<br>temperature approaches zero, the<br>model will become deterministic and<br>repetitive. | Temperature       |



### Large Language Models Are State-of-the-Art Evaluators of Translation Quality

Tom Kocmi and Christian Federmann Microsoft, One Microsoft Way, Redmond, WA-98052, USA {tomkocmi,chrife}@microsoft.com

### Abstract

We describe GEMBA, a GPT-based metric for assessment of translation quality, which works both with a reference translation and without. In our evaluation, we focus on zeroshot prompting, comparing four prompt variants in two modes, based on the availability of the reference. We investigate nine versions of GPT models, including ChatGPT and GPT-4. We show that our method for translation quality assessment only works with GPT 3.5 and larger models. Comparing to results from WMT22's Metrics shared task, our method achieves stateof-the-art accuracy in both modes when compared to MQM-based human labels. Our results are valid on the system level for all three WMT22 Metrics shared task language pairs, namely English into German, English into Russian, and Chinese into English. This provides a first glimpse into the usefulness of pre-trained, generative large language models for quality assessment of translations. We publicly release all our code and prompt templates used for the experiments described in this work, as well as all corresponding scoring results, to allow for external validation and reproducibility.<sup>1</sup>

# Implications?



At MIT, our teachers required that we use chatGPT.

ex: our Chinese teacher told us to use chatGPT to correct our grammar before posting our essays for other students to read. She didn't want any incorrect grammar to confuse other students.

Why are schools still banning chatGPT?!?

Last edited 10:19 AM · Sep 13, 2023 · 76.8K Views



### 仚

While preliminary results indicate that the GEMBA metric performs very well when compared to other automated metrics evaluated as part of the WMT22 Metrics shared task, it is important to note that these results are based on human labels for only three language pairs. We expect that the metrics performance may suffer for other language pairs, mainly underresourced languages similar to Hendy et al. (2023) who show low translation quality for such languages.







- Build your own attention maps Instructions:
- Shade in the parts of the matrix where the source language influences the target language. Justify each row with a short phrase explaining why.



### Critiquing output - plenty of room for critiques!



Translate this into Japanese (romanized english). " While the noodles at Ramen Shop are fine, I dislike the long waits and feel that the traditional ramen styles like tonkatsu or shio are done much better elsewhere"



The sentence "While the noodles at Ramen Shop are fine, I dislike the long waits and feel that  $\square$   $\square$   $\square$ the traditional ramen styles like tonkatsu or shio are done much better elsewhere" can be translated into romanized Japanese as:

"Ramenya no men wa maamaa desu ga, nagai matsuri ga kirai de, tonkotsu ya shio no dentōteki na ramen sutairu wa hoka no tokoro de yoku dekiteiru to omoimasu."



Can you do this in hiragana



Certainly, here is the sentence in hiragana:

"らーめんやの麺はまあまあですが、長い待ち時間が嫌いで、とんこつや塩の伝統的なラー メンスタイルは他のところでよくできていると思います。"



Q: When the output is tasked with rewriting in hiragana what are some big (sentence-level, syntactical, etc.) and small (wordlevel) errors that you see? (Hint: Ramen is not from Japan !! )





## First draft -> ChatGPT evaluation. Revise, resubmit.

version.

• Assignment: Write a short paragraph detailing your plans for the weekend. Submit your paragraph to a language model, and prompt the language model to identify (but not fix!) any errors. Rewrite and submit the the rough draft, comments, and revised



# Workshop tomorrow

- Exploring 2,048 different translation models in Huggingface using Google Colab
- Prompting best practices
- If-then collective composition assignments adapting for language classes



10 AM - 12 PM: B-21 Dwinelle

# Workshop

- Two models: Bard and ChatGPT

- Prompting best practices
  - -Chain of Thought, revision
  - API Playground and temperature
  - Notes on context windows
- Multimodal capabilities
- Advanced data analysis plugin
- Hugging face transformers in Colab
- -Executing Python code in Colab

Agenda

### Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis

Wenhao Zhu<sup>1,2\*</sup>, Hongyi Liu<sup>3\*</sup>, Qingxiu Dong<sup>4</sup>, Jingjing Xu<sup>2</sup> Shujian Huang<sup>1</sup>, Lingpeng Kong<sup>2,5</sup>, Jiajun Chen<sup>1</sup>, Lei Li<sup>6</sup>, <sup>1</sup> National Key Laboratory for Novel Software Technology, Nanjing University <sup>2</sup>Shanghai AI Lab <sup>3</sup> Shanghai Jiao Tong University <sup>4</sup> Peking University <sup>5</sup> The University of Hong Kong <sup>6</sup> University of California, Santa Barbara zhuwh@smail.nju.edu.cn, liu.hong.yi@sjtu.edu.cn, dqx@stu.pku.edu.cn, jingjingxu@pku.edu.cn

il.nju.edu.cn,liu.hong.yi@sjtu.edu.cn,dqx@stu.pku.edu.cn,jingjingxu@pku.edu.cn huangsj@nju.edu.cn,lpk@cs.hku.hk,chenjj@nju.edu.cn,lilei@cs.ucsb.edu,

# https://huggingface.co/tasks/translation

### Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

| Jason Wei           | Xuezhi Wang Dale Schuurmans |                                   | huurmans                  | Maarten |
|---------------------|-----------------------------|-----------------------------------|---------------------------|---------|
| <b>Brian Ichter</b> | Fei Xia                     | Ed H. Chi                         | Quoc V. Le                | Denny   |
|                     |                             | le Research, Bi<br>i , dennyzhou} | rain Team<br>•@google.com |         |

### en Bosma

ıy Zhou

